5,659 research outputs found

    Detecting Quantum Critical Points using Bipartite Fluctuations

    Full text link
    We show that the concept of bipartite fluctuations F provides a very efficient tool to detect quantum phase transitions in strongly correlated systems. Using state of the art numerical techniques complemented with analytical arguments, we investigate paradigmatic examples for both quantum spins and bosons. As compared to the von Neumann entanglement entropy, we observe that F allows to find quantum critical points with a much better accuracy in one dimension. We further demonstrate that F can be successfully applied to the detection of quantum criticality in higher dimensions with no prior knowledge of the universality class of the transition. Promising approaches to experimentally access fluctuations are discussed for quantum antiferromagnets and cold gases.Comment: 5 pages, 6 figures + suppl. material; final version, Phys. Rev. Lett. (in press

    General Relation between Entanglement and Fluctuations in One Dimension

    Full text link
    In one dimension very general results from conformal field theory and exact calculations for certain quantum spin systems have established universal scaling properties of the entanglement entropy between two parts of a critical system. Using both analytical and numerical methods, we show that if particle number or spin is conserved, fluctuations in a subsystem obey identical scaling as a function of subsystem size, suggesting that fluctuations are a useful quantity for determining the scaling of entanglement, especially in higher dimensions. We investigate the effects of boundaries and subleading corrections for critical spin and bosonic chains.Comment: 4 pages, 2 figures. Minor changes, references added

    Fluctuations and Entanglement spectrum in quantum Hall states

    Full text link
    The measurement of quantum entanglement in many-body systems remains challenging. One experimentally relevant fact about quantum entanglement is that in systems whose degrees of freedom map to free fermions with conserved total particle number, exact relations hold relating the Full Counting Statistics associated with the bipartite charge fluctuations and the sequence of R\' enyi entropies. We draw a correspondence between the bipartite charge fluctuations and the entanglement spectrum, mediated by the R\' enyi entropies. In the case of the integer quantum Hall effect, we show that it is possible to reproduce the generic features of the entanglement spectrum from a measurement of the second charge cumulant only. Additionally, asking whether it is possible to extend the free fermion result to the ν=1/3\nu=1/3 fractional quantum Hall case, we provide numerical evidence that the answer is negative in general. We further address the problem of quantum Hall edge states described by a Luttinger liquid, and derive expressions for the spectral functions of the real space entanglement spectrum at a quantum point contact realized in a quantum Hall sample.Comment: Final Version. Invited Article, for Special Issue of JSTAT on "Quantum Entanglement in Condensed Matter Physics

    Bipartite Fluctuations as a Probe of Many-Body Entanglement

    Full text link
    We investigate in detail the behavior of the bipartite fluctuations of particle number N^\hat{N} and spin S^z\hat{S}^z in many-body quantum systems, focusing on systems where such U(1) charges are both conserved and fluctuate within subsystems due to exchange of charges between subsystems. We propose that the bipartite fluctuations are an effective tool for studying many-body physics, particularly its entanglement properties, in the same way that noise and Full Counting Statistics have been used in mesoscopic transport and cold atomic gases. For systems that can be mapped to a problem of non-interacting fermions we show that the fluctuations and higher-order cumulants fully encode the information needed to determine the entanglement entropy as well as the full entanglement spectrum through the R\'{e}nyi entropies. In this connection we derive a simple formula that explicitly relates the eigenvalues of the reduced density matrix to the R\'{e}nyi entropies of integer order for any finite density matrix. In other systems, particularly in one dimension, the fluctuations are in many ways similar but not equivalent to the entanglement entropy. Fluctuations are tractable analytically, computable numerically in both density matrix renormalization group and quantum Monte Carlo calculations, and in principle accessible in condensed matter and cold atom experiments. In the context of quantum point contacts, measurement of the second charge cumulant showing a logarithmic dependence on time would constitute a strong indication of many-body entanglement.Comment: 30 pages + 25 pages supplementary materia

    The Hanabi Challenge: A New Frontier for AI Research

    Full text link
    From the early days of computing, games have been important testbeds for studying how well machines can do sophisticated decision making. In recent years, machine learning has made dramatic advances with artificial agents reaching superhuman performance in challenge domains like Go, Atari, and some variants of poker. As with their predecessors of chess, checkers, and backgammon, these game domains have driven research by providing sophisticated yet well-defined challenges for artificial intelligence practitioners. We continue this tradition by proposing the game of Hanabi as a new challenge domain with novel problems that arise from its combination of purely cooperative gameplay with two to five players and imperfect information. In particular, we argue that Hanabi elevates reasoning about the beliefs and intentions of other agents to the foreground. We believe developing novel techniques for such theory of mind reasoning will not only be crucial for success in Hanabi, but also in broader collaborative efforts, especially those with human partners. To facilitate future research, we introduce the open-source Hanabi Learning Environment, propose an experimental framework for the research community to evaluate algorithmic advances, and assess the performance of current state-of-the-art techniques.Comment: 32 pages, 5 figures, In Press (Artificial Intelligence
    • …
    corecore